
1

Introduction to Shadow-Test Approach
to Adaptive Testing

Wim J. van der Linden

2

Introduction

The distinctive feature of adaptive testing is sequential optimization
of item selection.
After each new response, the test taker’s current ability estimate is
updated and the next item is selected to be optimal at the new
estimate.
Mathematically, the optimization process is quite different from
what we have learned in our calculus classes.

3

Mathematical Optimization

In calculus, the typical optimization problem is to find maxima
and/or minima of a function y=f(x) over a real interval of x.

o
o

x

y=
f(x

)

4

Mathematical Optimization

Optimization over a set of discrete values of x does not
require calculus but an enumerative algorithm that checks
each discrete point in the domain to find the point with the
best function value.

x

y=
f(x

)

5

Mathematical Optimization

The problem gets more and more complicated if the number
of variables that define the domain increases.
In fact, the number of points that need to be checked growths
exponentially with the number of variables.
For 80 discrete variables, each with 10 values, the number
of points is already greater than the number of atoms in the
universe!

6

Mathematical Optimization

The problem gets even worse when the solution has to
satisfy a number constraints, as is the case in automated test
assembly where we typically want the result to satisfy large
numbers of content and statistical specifications.
The subset of feasible solutions is then dramatically smaller
than the space of all possible solutions but, for a realistic size
of item pool, still astronomically large.
In fact, a naive search for just one feasible solution may then
already take for ever.

7

Space of Solutions with Feasible Subset

Set of solutions without
any constraints

Subset of solutions
satisfying all constraints

8

Mathematical Optimization

Thanks to a computational revolution, we now have solvers
that find solutions to large test-assembly problems to a
required level of accuracy in a few seconds.
These solvers, which have been developed in the field of
mixed integer programming (MIP), are available both in open-
source and as commercial software (watch our next
presentation!).

9

Mathematical Optimization

MIP solvers systematically search a tree with all possible
solutions using backtracking. They go back to a previous
node in the tree when they hit an infeasible solution or the
value for the objective function gets lower than the best
solution so far.
The dramatic improvement in the running times for the solvers
has been made possible through powerful preprocessing of
the optimization problem and optimal implementation of the
algorithm (initialization; branch pruning; cutting planes; etc.)

10

Test-Assembly Problem

The steps necessary to solve a test-assembly problem are:
- choice of decision variables (mostly 0-1 variables);
- use of the variables to model the objective function and
each of the constraint;

- feeding the model into a MIP solver to obtain the solution.

11

Decision variables

Item 1 2 … i … 99 100

Variable x1 x2 … xi … x99 x100
Form 1 0 0 … .. … 0 0

Form 2 0 0 … … … 0 1
Form 3 0 0 … … … 1 1

… … … … … … … …

Form 2100 1 1 .. … … 1 1

12

Example of Optimization Model

test length:

of items on knowledge:

of items on applications:

expected total time on test:

!
!"#

#$$

𝑥!

!
!"#

%$

𝑥!

!
!"%#

#$$

𝑥!

!
!"#

#$$

𝑡!𝑥!

13

Example of Optimization Model

maximize !
!"#

#$$

𝑥!

!
!"#

%$

𝑥! ≥ 10

!
!"%#

#$$

𝑥! ≥ 10

!
!"#

#$$

𝑡!𝑥! ≤ 60

subject to

𝑥! ∈ 0,1 , 𝑖 = 1, … , 100

(maximal test length)

(# items on knowledge)

(# items on applications)

(time slot)

(range of decision variables)

14

Example of Optimization Model

The solution produced by the solver is a string of 0’s and 1’s
identifying the test that satisfies each of the constraints and
has an optimal value for the objective function.
Automated test-assembly software packages help you to
specify the objective function and constraints without the use
of any mathematics.
They also make a call to the solver and help you to analyze
the solution.

15

Automated Test Assembly

This was only an unrealistically small example of a test-
assembly problem.
MIP has been used to solve an extremely large variation of
real-world test-assembly problems, including:

- every realistic type of constraint and objective function;
- item sets with a common stimulus;
- sets of multiple parallel tests;
- enemy items;

16

Automated Test Assembly

- sets of tests with optimal anchor items;
- formatted, printable test forms
- item pools assembled from an inventory;
- pre-equated test forms;
- test forms with automatically generated items:
- test forms with predetermined level of speededness;
- et cetera.

17

Adaptive Test Assembly

Adaptive test assembly is even more complicated than fixed-
form assembly.
In addition to discrete variables and large numbers of
constraints, the solution now must be found sequentially,
instead of simultaneously as for fixed forms.
Not being able to backtrack and replace earlier items, we are
immediately faced with the dilemma between the selection of
suboptimal items and violation of the set of constraints.

18

Shadow-Test Approach

The (somewhat counterintuitive) shadow-test approach
resolves the dilemma by looking ahead!
It conceives of the test-assembly process not as a sequence
of individual items but of complete test forms.
Its alternate steps are:

- selection of an optimal full test at the ability estimate;
- administration of the best free item in the test:
- update of the ability estimate;
- and so on.

19

Shadow-Test Approach

θ

Items

 θ
!

0
 θ
!

1
 θ
!

2 θ
!

n−1

1 2 3 n-1 n

 θ
!

3

20

Shadow-Test Approach

Items already
administered

Items optimal at current
ability level (not shown
to examinee)

21

Shadow-Test Approach

It may look as if the approach is unrealistic due to all
necessary calls to the MIP solver, one after each item for each
examinee.
However, the job for the solver is much simpler than for fixed-
form assembly. The previous shadow test can be fed back into
the solver as initial solution, which then needs to search only
for a solution close to it in a subset of the same feasible space.
Numerous simulation studies and applications have shown
item-selection times in milliseconds.

22

Search for Next Shadow Test

Set of solutions without
any constraints

Subset of solutions
satisfying all constraints

Subsubset with
next shadow test

23

Conclusions

The shadow-test approach allows us to do anything that is
possible for automated assembly of fixed test forms but then
in an adaptive format.
In fact, as shown in the next presentation, it can even
produce the same test content in any possible format.
For example, just by temporarily “freezing” and “thawing” of
the shadow test, it turns adaptive testing into linear-on-the fly
testing, multistage testing with fixed subtests, multistage
testing with an adaptive first subtest, et cetera.

